詳細內容 當前位置:首頁 > 科學研究 > 學術交流
                      【明理講壇】數學中心“橢圓型偏微分方程與非線性泛函分析”報告會
                      發布時間:2020-12-01【告訴好友】 【關閉窗口】

                        報告時間:2020.12.08 下午14:30-17:30

                        會議主題:貽民預定的會議

                        會議時間:2020/12/08 13:30-18:00

                        點擊鏈接入會,或添加至會議列表:

                        https://meeting.tencent.com/s/S2UKX7J9YpTM

                        會議 ID:814 932 205

                        會議密碼:123456

                        (一)報告人:張彬林山東科技大學

                        報告題目:Kirchhoff-type fractional Laplacian: some existence results and open problems 

                        報告摘要:In this talk, we present two topics on Kirchhoff-type fractional Laplacian problems: (i) On existence and multiplicity of solutions for Kirchhoff-type fractional Laplacian problems via critical groups; (ii) On existence and uniqueness of solutions for strong singular Kirchhoff-type fractional Laplacian problems. It is worth mentioning that these kinds of problems possess significant difficulties caused by the interactions between the Kirchhoff term and the nonlocal feature of the fractional Laplacian. 

                        報告人簡介:

                        張彬林,山東科技大學教授,博士生導師。2013年博士畢業于哈爾濱工業大學,先后在意大利地中海研究中心南開大學陳省身數學研究所做過兩站博士后。當前的主要研究興趣變分和拓撲方法及其在數學物理問題中的應用。在《Calc. Var. PDEs》、《Nonlinearity》、《J. Differential Equations》、《Disc. Contin. Dyn. Syst.》、Science China-Mathematics重要期刊上發表學術論文90余篇。現任Advances in Nonlinear Analysis, Complex Variables and Elliptic Equations, Boundary Value Problems期刊編委。

                        (二)報告人:梁四化長春師范大學)

                        報告題目:Sign-changing solutions of critical fractional Kirchhoff problems with logarithmic nonlinearity

                        摘要:

                        In this paper, we are concerned with the existence of least energy sign-changing solutions for the fractional Kirchhoff problem with logarithmic and critical nonlinearity. By using constraint variational methods, topological degree theory and quantitative deformation arguments, we prove that the existence, energy estimates and the convergence property of the least energy sign-changing solution for this kind of problem.

                        梁四化,理學博士,碩士生導師,長春師范大學研究生院副院長,吉林省運籌學會理事和美國《Mathematical Reviews》雜志評論員,在《Calc. Var. PDEs》、《Nonlinearity》、《Adv. Differential Equations》、《 Z. Angew. Math. Phys. 》等重要期刊上發表學術論文68。

                            
                            
                      【關閉窗口】
                      福彩快三玩法